PHYTOTOXINS. II. **CHARACTERIZATION OF A PHYTOTOXIC FRACTION FROM ALTERNARlA** *ALTERNATA* **F. SP.** *LYCOPERSICI*

Albert T. Bottini,* John R. Bowen and David G. Gilchrist

Departments of Chemistry* and Plant Pathology, University of California, Davis, CA 95616 U.S.A.

SUMMARY. - **A host-specific phytotoxic fraction obtained from the cell-free culture filtrate** of A. *alternat*a f. sp. *lycopersici* is shown to consist of two esters of 1,2,3-propanetr[.] **carboxylic acid and 1-amino-ll,15-dimethylheptadeca-2,4,5,13,14-pentol1. The sites of esteri**fication are a terminal carboxyl of the acid and C_{13} (major component 2a) and C_{14} (2b) of 1.

The stem canker disease of tomato, caused by A. alternata f. sp. lycopersici, is controlled in the host by a single genetic locus with two alleles.¹ Cell-free culture filtrates of the pathogen yield two ninhydrin-positive fractions, T_A and T_R, which reproduce the macroscopic **disease symptoms only on tomato and do so under quantitative control by the same genetic locus** that regulates the disease reaction. T_A and T_B are separable by isoelectric focusing at pH 4-5, or by TLC on silica gel with 6:3:1 CH₃CO₂C₂H₅:CH₃CO₂H:H₂O, and are obtained most conveniently **in >lO mg amounts by gel-permeation chromatography on polyacrylamide Bio-Gel P-2.' Based on** current evidence T_A and T_B, which exhibitnecrotrophic biological activity at less than lOng/ml, are produced only by this pathogenic forma specialis.

Hydrolysis of T**A** with aqueous NaOH yields 1,2,3-propanetricarboxylate and a base which is **either l-amino-11,15-dimethylheptadeca-2,4,5,13,l4-pentol 1 or its 7,15-dimethyl isomer.** ³ Methylation and deuteriomethylation⁴ of T_A gave products whose HRMS⁵ has base peaks of 360.3126 $(C_{20}H_{42}NO_4^{\dagger} = 360.3113)$ and 378.4260 $(C_{20}H_{24}D_{18}NO_4^{\dagger} = 378.4244)$ and parent peaks of 633.4477 $(C_{33}H_{63}NO_{10}^{\dagger}$ = 633.4452; 0.65% BP) and 657.5939 $(C_{33}H_{39}D_{24}NO_{10}^{\dagger}$ = 657.5958; 1.31% BP). Also present in the HRMS of deuteriomethylated T_A were peaks corresponding to loss of H, D, CH₃, C₄H₉, and one or more deuteriomethyls, deuteriomethoxyls and deuteriomethanols from M, peaks of **m/e < 448.6 noted in the HRMS of the deuteriomethylated aminopentol,3 and peaks of 130.0590** $(C_6H_4D_3O_3^+ = 130.0584$; 8.22% BP) and 193.0969 $(C_8H_5D_6O_5^+ = 193.0983$; 18.84% BP) which arise from the acid part. The HRMS data show that hydrolysis of T_A is unaccompanied by skeletal rearrangement but they leave unanswered the questions as to location of the second methyl group (C₇ or **C,,) and the site or sites of esterification in both the acid and the aminopentol parts. These questions are answered by consideration of the CMR spectrum of T_A.⁶**

In addition to 4 bands in the carbonyl region from 6 174-182.5 ppm, with relative intensities of 1:1:2:2, the CMR spectrum of TA consists of 12 bands due to the major component, 12 **bands due to a minor component, and 10 composite bands due to both components. The last set is made up of 3 bands whose line shapes are particularly sensitive to the presence of paramagnetic metal ions such as** Cu(I1) **and 7 bands with the same chemical shifts to 10.05 ppm as bands in the spectrum of the aminopentol.3 The 3 bands are assigned to the saturated carbons of the tricarboxylic acid part, and their chemical shifts and multiplicities - 6 34.73** (t), 40.35 (t), and 42.07 ppm (d) – confirm what can be inferred from the appearance

2724

of the carbonyl bands; namely, the site of esterification is a terminal carboxylate (CalC.' 6 37.4 [C₁,], 42.4 [C₃,] and 43.3 ppm [C₂,]) and not the C₂, carboxylate (calc.⁷ 6 41.4[t x 2] and 42.3 ppm [d]).¹⁰ Of the 7 bands with chemical shifts in common with bands in the spectrum of the aminopentol, 4 have been assigned to C_1 , C_2 , C_4 and C_5 . As these sites are not perturbed by the triacid part, the hydroxyls at C_{13} and C_{14} must be the sites of esterification. **Significantly, the remaining 3 bands, all triplets, at 6 25.70, 31.49 and 35.74 ppm, have** chemical shifts that agree well with values calculated for C_7 (25.0), $C_6(33.0)$ and C_3 (38.4) of **the 11,15-dimethyl structure la when the uncertainties in correcting for the effect of nearby hydroxyl groups are taken into account.7**

Each of the two sets of 12 bands is made up of 4 doublets, 5 triplets and 3 quartets. Consideration of the chemical shifts of the triplets with reference to those in the spectrum of the aminopentol leads to a clear choice between the 7,15- and 11,15-dimethyl structures. Of the calculated values for the chemical shifts of triplets in the spectrum of the 7,15 dimethyl isomer of **1a**, 5 are at $\delta > 30$ ppm. The highest values - 36.9 (C_B), 38.4 (C₃) and 39.9 (C_6) - are for carbons that are 5 or more bonds removed from the sites of acylation, **and these can be expected to show little change on acylation. In contrast, two of the 3 highest calculated values for chemical shifts of triplets in the spectrum of la are for** carbons much nearer to the sites of acylation - 36.9 (C₁₀) and 40.2 (C₁₂) - and the chemical shift of $C_{1,2}$, in particular, is expected to be affected by acylation at $C_{1,3}$ or $C_{1,4}$. Specifically, a 3-ppm upfield shift is estimated⁷ as a result of acylation at C₁₃, and a 2-ppm downfield shift is estimated on acylation at C₁₄. The spectrum of T_A has two triplets due **to the major component at 6 33.82 and 37.02 ppm, two due to the minor component at 6 36.78 and 37.82 ppm, and one due to both components at 6 35.74 ppm; the spectrum of the aminopentol has triplets at 6 34.72, 35.73 and 37.59 ppm. From the foregoing, we conclude: the 35.74** band is due to C_3 ; the 34.72, 33.82 and 36.78 bands are due to C_{12} of **1a,2a** and **2b**; and the 37.59, 37.02 and 37.82 bands are due to C_{10} of **1a, 2a** and **2b.** In short, the site of <code>acylation</code> in the major component is C₁₃, and C₁₄ is the site of acylation in the minor

component. ™3
СН3−СН−СН−СН−СН₂−СН−СН₂−СН−СН₂−СН₂−СН₂−СН₂−СН−СН2−М₂−М+
СН ОН ОН

l*H+= la: X=Y=OH 2a: X=OH , Y='0g-cH*-cH (~0,0)-~H~-c0, 2b: **X=G~\$-~~z-~~(~~\$~H,-~~,** , **Y=OH**

Observed and calculated CMR chemical shifts forla, 2a and 2b are given in Table 1, and the proton-noise decoupled CMR spectrum of TA from 6 lo-82 ppm is shown in Figure 1A. The 360-MHz PNR spectrum of TA is shown in Figure 1B.

с	Calc ^b	Observed			C	13		$2a^c$		$2b^c$	
	\bullet	1a	2a	2 _b		Calc ^b	Obs.	Calc^b	Obs.	ь Calc.	Obs.
1	47.9	45.28	45.28	45.28	11	27.5	28.59	29.5	28.62	27.5	28.37
$\mathbf{2}$	66.6	64.94	64.97	64.97	12	40.2	34.72	37.2	33.82	42.2	36.78
3	38.4	35.73	35.74	35.74	13	73.6	69.98	77.6	74.46	70.6	69.16
4	73.7	70.49	70.46	70.46	14	85.9	79.18	82.9	76.30	89.9	81.72
5	79.0	74.72	74.67	74.70	15	37.6	36.05	39.6	36.35	34.6	34.89
6	33.0	31.44	31.49	31.49	16	24.6	23.96	24.6	24.27	26.6	24.70
$\overline{7}$	25.0	25.72	25.70	25.70	15a	14.1	14.85	14.1	14.48	16.1	14.80
8	30.2	29.10	28.92	29.15	$\mathbf{1}^{\prime}$	\blacksquare	\bullet	37.4	34.73	37.4	34.73
9	27.3	25.13	25.02	25.16	2'	$\qquad \qquad \blacksquare$	-	43.3	42.07	43.3	42.07
10	36.9	37.59	37.02	37.82	$\mathbf{3}'$	$\qquad \qquad \blacksquare$	۰.	42.4	40.35	42.4	40.35
17	10.9	10.47	10.14	10.48							
11a	19.6	20.36	20.16	20.28							

Table 1. Calculated and Observed CMR Resonance Frequencies of 1a, 2a, and 2bin δ ppm

 a Obtained at 50.3 MHz. 6 See Footnote 7. ^C Resonances at δ 174.51, 175.00, 180.45 and 182.15 ppm with relative intensities of $1:1:2:2$ due to the carboxyl carbons were observed in the spectrum of TA.

The upfield portion of the 360-MHz PMR spectrum of TA consists of incompletely resolved multiplets (18H) from 350-650 Hz and, in the methyl region, 4 doublets with $J = 7.3$, 7.3, 6.6 and 6.6 Hz at 8 0.833 (2b), 0.853 (2a), 0.903 (2a) and 0.927 ppm (2b), and two triplets, $J = 7.3$ Hz, at δ 0.857 (2b) and 0.878 ppm (2a) (9H). The remainder of the spectrum consists of: 5 well-defined multiplets (lH each) with the same or nearly the same parameters as those of bands assigned to protons at C_1 , C_2 , C_4 and C_5 of **1a**;³ two coupled multiplets, $J = 2.8$ Hz, at δ 3.458 and 5.135 ppm (0.57H each) due to protons at C_{14} and C_{13} of 2a; two coupled multiplets, $J = 4.5$ Hz, at δ 3.895 (0.43H) and 4.771 ppm (OH interference) due to protons

Figure 1: A, 50.3-MHz proton-noise decoupled CMR spectrum of T_A from δ 10-82 ppm; B, 360-MHz PMR spectrum of TA, resolution enhanced.

at Cl3 and Cl4 of 2a; and 3 apparent multiplets with pH-dependent chemical shifts that are centered at ca. δ 2.2 (1H), 2.6 (3H), and 2.95 ppm (1H) in the spectrum of a D₂O solution which **gave a pH-meter reading of 8.2. These last bands are assigned to the protons at the saturated** carbons of the acid part. It should be noted that the chiral centers at C_2 , C_4 and C_5 of **1a**, **and therefore 2a and 2b,have either the all-R or all-S configuration.3**

Although TA obtained by different isolation techniques was a 4:3 mixture of 2a and 2b, it remains to be determined if this is the composition produced by the fungal pathogen rather than an equilibrated mixture. Also, the relative ph:ytotoxicitycf 2a and 2b remains to be determined. Evidence now available indicates that Tg consists of two components with the same carbon skeletons as 2a and 2b but which lack the C₅ hydroxyl and differ in stereochemistry at one or more of the chiral centers from C_{11} to C_{15} .

Acknowledgments. - We wish to thank Ann Martensen, Mr. M. Hauptman and Mr. M. Redor for technical assistance, Drs. J. Dallas and C.B. Matson, *UCD, and J.C. Reynolds, SMRL,* fop *obtaining the NMR spectra, and Miss 5'. Lewis and Dr. If. Straub for obtaining the mass spectra* and, particularly, for their instruction and assistance with the methylation reactions. We are *grateful to Professor A.L. BurZingame for making* available *the facilities of the Biomedical and Envirorunental Mass Spectrometry Resource. This research was supported by grants from the NSF (PCM 80-11731, the USDA (59-2063-014161, and the Faculty Research Conrmittee, University of California, Davis.*

REFERENCES AND NOTES

- **1.** D.G. Gilchrist and R.G. Grogan, *Phytopathology* 66, 165 (1976).
- **2. The culture filtrate is concentrated to 10% of its original volume, treated with 0.43 part** of 1.33 M barium acetate, centrifuged, and the centrifugate is extracted with butanol. The **butanol is replaced with water on the rotovap, and the aqueous solution is concentrated to a yellow syrup, which is separated by gel-permeation chromatography using a pH 4.5 acetate** buffer. The first ninhydrin-positive fraction contains T_A and T_B in a ratio of 12:1.
- **3. A.T. Bottini and D.G. Gilchrist, accompanying manuscript.**
- **4. H. Morris, FEBS (Fed.** *Ewr. &&hem. Sue.1 Le&ehn* **22,257 (1972).**
- **5. Electron impact. mass spectra were obtained with a modified AEIMS-902 using a quartz-tipprobe, a repetitive scanning rate of 8 sec./decade (m/z70-900) at 10000 resolution (10% valley definition), accel. voltage 8 kv, and source temp 240-260"; the data were processed using** the Sigma 7-LOGOS-II real-time data acquisition computer. The spectra were offained at the **Biomedical and Environmental Mass Spectrometry Resource, Space Sciences Laboratory, University of California, Berkeley; the resource is supported by NIH Division of Research Resources grant RR 00719.**
- **6. CMR spectra wereobtainedwith an NT-200 spectrometer; chemical shifts are reported relative** to external TMS (capillary) at δ 0.00 ppm and are precise to \pm 0.02 ppm. PMR spectra were **obtained at 200-MHz and 360-MHz with NT-200 and NT-360 spectrometers; chemical shifts are reported relative to internal acetate at 6 1.903 ppm and are precise to 10.002 ppm. The spectrometers were made available through the UCD NMR Facility; the NT-200 spectrometer was purchased in part by NSF grant CHE 79-04832 to the Department of Chemistry. PMR and protonnoise decoupled CMR spectra of TA, obtained by isoelectric focusing, were obtained at the Stanford Magnetic Resonance Laboratory (SMRL) with an HXS-360 spectrometer; the SMRL facility is supported by NSF grant GR 23633 and NIH grant RR 00711. Multiplicities of the bands in the CMR spectrum were determined by off-resonancedecouplingof the PMR spectrum; assignments to bands in both spectra are consistent with the results of the off-resonance decoupling experiments.**
- **7.** CMR chemical shifts were **calculated using the "Lindeman-Adams Rule"srg and the empirical substituent parameters compiled by Wehrli and Wirthlin.13 Values calculated for the carbons** without α,β or δ substituents do not require use of substituent parameters and are expected **to have a standard error of 0.8 Ppmig values for substituent parameters "are reliable Only within a margin of 15 + lo%."**
- **8. L.P. Lindeman and J.Q. Adams, An&. Chem. 43, 1245 (1971).**
- 9. F.W. Wehrli and T. Wirthlin, *Interpretation of Carbon-13* MMK Spec*tra*, Heydon and Son, Inc., **Philadelphia, PA, 1978, pp. 36-42.**